Three-Dimensional Molecular Dynamics Simulation of Atomic-Scale Cutting Process Using Pin Tool.
نویسندگان
چکیده
منابع مشابه
Simulation of Nano-scale Cutting with Molecular Dynamics
The simulation of nanometric cutting of copper with diamond cutting tools, with the Molecular Dynamics method is considered. A 2D model of orthogonal nano-scale cutting is presented and the influence of the depth of cut and tool rake angle on chip morphology and cutting forces is investigated. For the analysis, three different depths of cut, namely 10Å, 15Å and 20 Å and four tool rake angles, n...
متن کاملPlanar Molecular Dynamics Simulation of Au Clusters in Pushing Process
Based on the fact the manipulation of fine nanoclusters calls for more precise modeling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviors. Performing the planar simulations can provide a ...
متن کاملMolecular Dynamics Simulation of the Melting Process in Au15Ag40 Nanoalloys
In this study the operations of melting of Au15Ag40 nanoalloy have been studied using the molecular dynamic simulations through the Gupta multiparticle potential and the nonergodicity of simulations is eliminated by the multiple histogram method. The melting characteristics are determined by the analysis of variations in the potential energy. The calculations indicate that the melting of Au15Ag...
متن کاملWettability of boron monolayer using molecular dynamics simulation method
Over the past years, two-dimensional materials such as graphene, phosphorene, silicene, and boron-nitride have attracted the attention of many researchers. After the successful synthesis of graphene, due to its many new applications, researches began to produce nanosheets from other elements, and among these elements, boron was one of the options. In the periodic table of elements, boron is ahe...
متن کاملSimulation of the Cutting Process Basic Instability Using Molecular Dynamics Technique
Cutting processes are unstable machining processes. The influence of the instability on the deformation mechanism that leads to the chip formation at the atomic scale is analysed in this paper. Fundamental aspects of the crystalline networks deformation are underlined by using molecular dynamics technique applied to the microscopic level of the deformed material and are defined as basic instabi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A
سال: 1996
ISSN: 0387-5008,1884-8338
DOI: 10.1299/kikaia.62.2364